organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tian-Tian Pan, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.048 wR factor = 0.146 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Benzimidazolium hydrogen nitroterephthalate

In the title compound, $C_7H_7N_2^+$, $C_8H_4NO_6^-$, the partially overlapped arrangement and the shorter face-to-face distance of 3.457 (4) Å indicate π - π stacking between parallel benzimidazolium cations, whereas the longer face-to-face distance of 3.649 (6) Å suggests normal van der Waals contacts between parallel benzene rings of neighbouring nitroterephthalate anions. Received 24 October 2005 Accepted 1 November 2005 Online 5 November 2005

Comment

Structure determinations have revealed that π - π stacking interactions commonly occur in metal complexes incorporating aromatic heterocyclic ligands, such as imidazole and benzimidazole (Pan & Xu, 2004), but are rarely found for other aromatic ligands, such as benzoate and its derivatives. As part of our ongoing investigations of the nature of π - π stacking, the title compound, (I), containing both benzimidazolium cations and nitroterephthalate anions, has been prepared, and its X-ray crystal structure is presented here.

The molecular structure of (I) is shown in Fig. 1. The crystal structure of (I) consists of benzimidazolium (bzim) cations and nitroterephthalate (ntph) anions; they link to each other *via* $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonding (Table 1).

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates a hydrogen bond.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

The two carboxylate groups of ntph are twisted out of the plane of the benzene ring by 8.31 $(11)^{\circ}$ for C18 (carboxylic acid) and 23.80 $(11)^{\circ}$ for C11 (carboxylate). This favours the formation of hydrogen bonds between bzim and ntph. The difference of 0.108 (3) Å in C-O bond distances for C18 suggests this is a neutral carboxylic acid group, which agrees with the peak in a difference Fourier map.

A partially overlapped arrangement between parallel bzim cations and between parallel benzene rings of neighbouring ntph anions is observed in the crystal structure of (I) (Fig. 2). The face-to-face distance of 3.457 (4) Å indicates the existence of π - π stacking between bzim cations, whereas the faceto-face distance of 3.649 (6) Å suggests normal van der Waals contacts between the benzene rings of neighbouring ntph anions.

Experimental

Na₂CO₃ (0.21 g, 2 mmol) and nitroterephthalic acid (0.42 g, 2 mmol) were dissolved in a hot water-ethanol solution (20 ml, 1:3 v/v). Benzimidazole (0.24 g, 2 mmol) was then added to this solution. The mixture was refluxed for 4 h and filtered after cooling to room temperature. Colourless single crystals of (I) were obtained after three weeks.

Crystal data

$C_7H_7N_2^+ \cdot C_8H_4NO_6^-$	Z = 2		
$M_r = 329.27$	$D_x = 1.493 \text{ Mg m}^{-3}$		
Triclinic, P1	Mo Ka radiation		
a = 8.445 (6) Å	Cell parameters fro		
b = 9.076 (4) Å	reflections		
c = 9.755 (4) Å	$\theta = 2.8 - 25.0^{\circ}$		
$\alpha = 98.051 \ (2)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$		
$\beta = 91.905 \ (2)^{\circ}$	T = 295 (2) K		
$\gamma = 97.891 \ (2)^{\circ}$	Block, colourless		
V = 732.3 (7) Å ³	$0.36 \times 0.30 \times 0.24$ m		
Data collection			
Rigaku R-AXIS RAPID	2593 reflections with		
diffractometer	$R_{\rm int} = 0.022$		
ω scans	$\theta_{\rm max} = 27.5^{\circ}$		
Absorption correction: none	$h = -10 \rightarrow 10$		

sorption correction: none 7282 measured reflections 3323 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.146$ S = 1.063323 reflections 217 parameters H-atom parameters constrained from 6302 24 mm with $I > 2\sigma(I)$

 $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

 $w = 1/[\sigma^2(F_0^2) + (0.0827P)^2]$ + 0.1449P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Figure 2

The partially overlapped arrangement of neighbouring aromatic rings [symmetry codes: (iii) -x, -y, 1-z; (iv) 1-x, 1-y, -z].

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$N1 - H1 \cdots O2^{i}$ $N3 - H3 \cdots O1$ $O4 - H4A \cdots O2^{ii}$	0.91 0.84 0.97	1.82 1.78 1.65	2.724 (3) 2.619 (3) 2.619 (2)	170 171 173

Symmetry codes: (i) x, y - 1, z; (ii) x, y, z - 1.

H atoms on the carboxylic O atom and bzim N atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{iso}(H) = 1.5U_{eq}(carrier)$. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and included in the final cycles of refinement in the riding mode, with $U_{iso}(H) =$ $1.2U_{eq}(C).$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.