Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tian-Tian Pan, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.146$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzimidazolium hydrogen nitroterephthalate

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}{ }^{-}$, the partially overlapped arrangement and the shorter face-to-face distance of 3.457 (4) \AA indicate $\pi-\pi$ stacking between parallel benzimidazolium cations, whereas the longer face-to-face distance of 3.649 (6) A suggests normal van der Waals contacts between parallel benzene rings of neighbouring nitroterephthalate anions.

Comment

Structure determinations have revealed that $\pi-\pi$ stacking interactions commonly occur in metal complexes incorporating aromatic heterocyclic ligands, such as imidazole and benzimidazole (Pan \& Xu, 2004), but are rarely found for other aromatic ligands, such as benzoate and its derivatives. As part of our ongoing investigations of the nature of $\pi-\pi$ stacking, the title compound, (I), containing both benzimidazolium cations and nitroterephthalate anions, has been prepared, and its X-ray crystal structure is presented here.

The molecular structure of (I) is shown in Fig. 1. The crystal structure of (I) consists of benzimidazolium (bzim) cations and nitroterephthalate (ntph) anions; they link to each other via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 1).

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The dashed line indicates a hydrogen bond.

Received 24 October 2005 Accepted 1 November 2005 Online 5 November 2005
\qquad

The two carboxylate groups of ntph are twisted out of the plane of the benzene ring by $8.31(11)^{\circ}$ for C 18 (carboxylic acid) and $23.80(11)^{\circ}$ for C11 (carboxylate). This favours the formation of hydrogen bonds between bzim and ntph. The difference of 0.108 (3) \AA in $\mathrm{C}-\mathrm{O}$ bond distances for C18 suggests this is a neutral carboxylic acid group, which agrees with the peak in a difference Fourier map.

A partially overlapped arrangement between parallel bzim cations and between parallel benzene rings of neighbouring ntph anions is observed in the crystal structure of (I) (Fig. 2). The face-to-face distance of 3.457 (4) \AA indicates the existence of $\pi-\pi$ stacking between bzim cations, whereas the face-to-face distance of 3.649 (6) A suggests normal van der Waals contacts between the benzene rings of neighbouring ntph anions.

Experimental

$\mathrm{Na}_{2} \mathrm{CO}_{3}(0.21 \mathrm{~g}, 2 \mathrm{mmol})$ and nitroterephthalic acid $(0.42 \mathrm{~g}, 2 \mathrm{mmol})$ were dissolved in a hot water-ethanol solution ($20 \mathrm{ml}, 1: 3 \mathrm{v} / \mathrm{v}$). Benzimidazole ($0.24 \mathrm{~g}, 2 \mathrm{mmol}$) was then added to this solution. The mixture was refluxed for 4 h and filtered after cooling to room temperature. Colourless single crystals of (I) were obtained after three weeks.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}{ }^{-}$	$Z=2$
$M_{r}=329.27$	$D_{x}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.445(6) \AA$	Cell parameters from 6302
$b=9.076(4) \AA$	reflections
$c=9.755(4) \AA$	$\theta=2.8-25.0^{\circ}$
$\alpha=98.051(2)^{\circ}$	$\mu=0.12 \mathrm{~mm}^{-1}$
$\beta=91.905(2)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=97.891(2)^{\circ}$	Block, colourless
$V=732.3(7) \AA^{\circ}$	$0.36 \times 0.30 \times 0.24 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID	2593 reflections with $I>2 \sigma(I)$
diffractometer	$R_{\text {int }}=0.022$
ω scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: none	$h=-10 \rightarrow 10$
7282 measured reflections	$k=-11 \rightarrow 11$
3323 independent reflections	$l=-12 \rightarrow 12$
$R e f i n e m e n t$	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0827 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$	$\quad+0.1449 P]$
$w R\left(F^{2}\right)=0.146$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.06$	$(\Delta / \sigma)_{\max }<0.001$
3323 reflections	$\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3}$
217 parameters	$\Delta \rho_{\min }=-0.29 \mathrm{e} \AA^{-3}$

Figure 2
The partially overlapped arrangement of neighbouring aromatic rings [symmetry codes: (iii) $-x,-y, 1-z$; (iv) $1-x, 1-y,-z$].

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.91	1.82	$2.724(3)$	170
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	0.84	1.78	$2.619(3)$	171
$\mathrm{O} 4-\mathrm{H} 4 A \cdots 2^{\mathrm{ii}}$	0.97	1.65	$2.619(2)$	173

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y, z-1$.
H atoms on the carboxylic O atom and bzim N atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (carrier). Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and included in the final cycles of refinement in the riding mode, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

